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Non-density of Restricted Rationals
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In [2] the author introduced restricted rational functions of the form
p(x)!q(x), where

0< II(X) ~ q(x) ~ v(x) (I)

and Ii and v are continuous.
A special case was given earlier by Krabs, and a problem implying

restraints of that type, by Kaufman and Taylor. We consider the density of
such rationals in C[:x, /J] for Ii, \' flxcd but otherwise arbitrary. Providing
there is a polynomial q satisfying the restraints, density follows from the
Weierstrass theorem if p is allowed to be freely chosen. We consider the
case in which II is given, p runs over all polynomials of degree ~ II and we
approximate a function f with no zeros. It is well-known that f can be
approximated arbitrarily well by I !q, q unrestricted but> 0 or < O. See [I]
for such results. Assume f> O.

First consider the case in which p is taken from the constants. Without
loss of generality we consider the case in which Ii = [; (constant) and v = I.
Then any restricted r> 0 satisfies

min r(x) I
----<­
max r(x) = i:

and if min f(x )!max f(x) > I!B, f cannot be approximated.
Next let p be of fixed degree 11 and assume p!q can approximate any f > 0

arbitrarily well. We first set f = I on the left side S of the interval. Then any
p!q closely approximating f nearly satisfies the inequality

Il(X)~P(x);c:.v(x), XES
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so that for some small ().
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Y E .\. (2 )

But (2) implies by [4. p. 24J that the /[ norm of the coefficients of p is
bounded. say by /'v1. Hence

(l

Hence p(y);::: N/JI(x). and if we select I larger at /J we do not get
approximation there.

The L
I
, norm on [x. /1] is also of interest. The argument for constant

numerator carries over. By an argument of Tornheim [5. Theorem 1], piq
approximating I on .s' implies that the /1' norm of the coefficients of p is
bounded and the argument for general p goes through.

Should we require. as in some of [3], that the set Q, of allowable
denominators q exclude denominators with zeros and be compact. then
there must exist Ii. \' such that (I ) holds and consequently our non-density
result holds.

Results indicating which functions can be as closely approximated by
restricted rationals as by non-restricted rationals would be welcome.

A generalization of rationals consists of "powered rationals" p'/q'. sand
,. being fixed natural numbers. [t is seen that if fJ is of fixed degree and q
is restricted as above. restricted powered rationals are non-dense by similar
arguments.
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